首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   729篇
  免费   52篇
  国内免费   49篇
林业   16篇
农学   36篇
基础科学   3篇
  455篇
综合类   159篇
农作物   77篇
水产渔业   8篇
畜牧兽医   54篇
园艺   6篇
植物保护   16篇
  2024年   1篇
  2023年   19篇
  2022年   28篇
  2021年   26篇
  2020年   38篇
  2019年   25篇
  2018年   34篇
  2017年   44篇
  2016年   56篇
  2015年   28篇
  2014年   35篇
  2013年   54篇
  2012年   83篇
  2011年   42篇
  2010年   32篇
  2009年   46篇
  2008年   30篇
  2007年   31篇
  2006年   29篇
  2005年   11篇
  2004年   24篇
  2003年   11篇
  2002年   5篇
  2001年   11篇
  2000年   12篇
  1999年   5篇
  1998年   5篇
  1997年   12篇
  1996年   11篇
  1995年   3篇
  1994年   6篇
  1993年   6篇
  1992年   5篇
  1991年   3篇
  1990年   1篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有830条查询结果,搜索用时 359 毫秒
31.
Soil and crop management practices may alter the quantity, quality, and placement of plant residues that influence soil C and N fractions. We examined the effects of two tillage practices [conventional till (CT) and no-till (NT)] and five crop rotations [continuous spring wheat (Triticum aestivum L.) (CW), spring wheat–fallow (W–F), spring wheat–lentil (Lens culinaris Medic.) (W–L), spring wheat–spring wheat–fallow (W–W–F), and spring wheat–pea (Pisum sativum L.)–fallow (W–P–F)] on transient land previously under 10 years of Conservation Reserve Program (CRP) planting on the amount of plant biomass (stems + leaves) returned to the soil from 1998 to 2003 and soil C and N fractions within the surface 20 cm in March 2004. A continued CRP planting was also included as another treatment for comparing soil C and N fractions. The C and N fractions included soil organic C (SOC), soil total N (STN), microbial biomass C and N (MBC and MBN), potential C and N mineralization (PCM and PNM), and NH4-N and NO3-N contents. A field experiment was conducted in a mixture of Scobey clay loam (fine-loamy, mixed, Aridic Argiborolls) and Kevin clay loam (fine, montmorillonitic, Aridic Argiborolls) in Havre, MT, USA. Plant biomass yield varied by crop rotation and year and mean annualized biomass was 45–50% higher in CW and W–F than in W–L. The SOC and PCM were not influenced by treatments. The MBC at 0–5 cm was 26% higher in W–W–F than in W–F. The STN and NO3-N at 5–20 cm and PNM at 0–5 cm were 17–1206% higher in CT with W–L than in other treatments. Similarly, MBN at 0–5 cm was higher in CT with W–L than in other treatments, except in CT with W–F and W–P–F. Reduction in the length of fallow period increased MBC and MBN but the presence of legumes, such as lentil and pea, in the crop rotation increased soil N fractions. Six years of tillage and crop rotation had minor influence on soil C and N storage between croplands and CRP planting but large differences in active soil C and N fractions.  相似文献   
32.
The effects of cultivation and overgrazing on soil quality in arid regions have been rarely addressed. This study investigated the roles of cropping and grazing in soil organic C pools and aggregate stability at 0–20 cm depth by comparing conventional grazing (non-fenced ever), intensive grazing (fenced for 22 years) and cropping (cultivated for 40 years) in the arid Hexi Corridor of northwestern China. Total soil organic C (TOC) under non-fenced grazing was 21.6 g kg−1 (or 52.9 Mg ha−1), which was 19.9% (or 13.2% mass per area) lower than that under fenced grazing, because of lower stable organic C fraction (<0.05 mm) (i.e., 15.2 g kg−1 or 37.4 Mg ha−1 in non-fenced versus 19.2 g kg−1 or 44.5 Mg ha−1 in fenced grazing). Cropping had similar TOC concentration but 15.7% less TOC mass per area compared with non-fenced grazing mainly due to a decrease in coarse organic C (2–0.1 mm) (i.e., 4.1 g kg−1 or 10.1 Mg ha−1 in non-fenced versus 2.9 g kg−1 or 6.0 Mg ha−1 in cropping). Non-fenced grazing produced 1.49, 1.17 and 0.19 g kg−1 of soil carbohydrate C extracted by concentrated acid, diluted acid and hot water, respectively. The three carbohydrate C fractions were increased by 21.5, 14.5 and 15.8% under fenced grazing but lowered by 12.8, 18.8 and 21.1% under cropping, respectively. Soil mineralized C after 51-day incubation was the highest under fenced grazing followed by non-fenced grazing, and the lowest under cropping. Percentage of water-stable aggregates (>0.25 mm) in total aggregates and mean weight diameter were 15% and 0.28 mm under cropping, significantly lower than 65% and 3.11 mm under non-fenced grazing and 65% and 2.84 mm under fenced grazing. The aggregates of >1 mm were almost entirely demolished under cropping when subjected to wet sieving. Reduction of soil carbohydrates under cropping was closely related to the decline in aggregate water-stability. The negative effects of cropping on soil organic C pool and aggregate water-stability may suggest that cropping on this arid grassland is not sustainable unless no-tillage is adopted. In favor of increasing soil carbohydrates and maintaining soil aggregation, fenced-grazing would be a better option than cropping and non-fenced grazing for the management of arid grasslands.  相似文献   
33.
Sewage sludge (SS), a highly heterogeneous semisolid fraction of sewage water (about 1% of the sewage water), contains various amounts of nitrogen (N) and phosphorus (P) as well as trace elements such as cadmium (Cd), lead (Pb), copper (Cu), nickel (Ni) and zinc (Zn) with extremely variable physical and chemical compositions. Application of SS improves soil properties, increases yield and simultaneously increases trace metal content in soil and plants. The difficulty in handling, transporting and applying SS and its adverse effect, especially trace metal content in soil and plant, can be overcome by SS–coir pith pelletization (SSCP) or mixing with sewage sledge–coir pith mixture (SSCM). A study was undertaken to evaluate the prepared SSCM and SSCP (1:1 ratio of SS and coir pith) along with SS on dry matter yield, trace metal content in soil and plant parts. The results showed that increased rates of application of SS or SSCM or SSCP increased the green and dry fodder yield of forage maize. Application of SS as either SSCM or SSCP at 1.2 and 2.4 g pot?1 significantly reduced the trace metal content diethylene triamine pentaacetic acid (DTPA extractable) in soil and plant parts (leaves steam and root) compared to SS application. Therefore, in order to reduce the bioavailability of trace metal in soil and its uptake by plant, application of SSCM or SSCP at 1.2 or 2.4 g pot?1 proved to be a better option than SS application.  相似文献   
34.
 The simultaneous impact of three successive crops of wheat (Triticum aestivum L.) and of the earthworm (Lumbricus terrestris L.) on the mineralisation of 15N-labelled organic compounds adsorbed to different soil size fractions (sand and organic residues >50 μm; silt 50–2 μm; coarse clay 2–0.2 μm and fine clay <0.2 μm) was studied under controlled conditions in the greenhouse. Unplanted soils (UPS) were used as controls. In planted soils without earthworm (PS) total plant biomass decreased with each cropping by up to 50%. However, in planted soils with earthworms (PES) the total plant biomass loss was only 17%. This pattern was explained by the earthworm effect. Compared to the unplanted soils, the planted soils had an increased (mean +37%) mineralisation of 15N adsorbed onto fine clays and a partial transfer of 15N to silt and coarse clay. The quantities of 15N mineralised and transferred were higher in the planted soils with earthworms, indicating an amplification of the phenomenon in the presence of earthworms. The simultaneous effect of the rhizosphere and the drilosphere did not lead to increased mineralisation of N adsorbed onto coarse clays and silts but instead a greater transfer of N associated with the fine fractions towards the coarser fractions. Received: 25 April 2000  相似文献   
35.
Availability, fixation, and transformation of added P were studied in a 16-week incubation experiment with a Vertisol amended with farmyard manure in pots with 500 g soil each. P availability, as measured by Olsen P, decreased for up to 8 weeks with various rates of added P, when no manure was applied. In the presence of farmyard manure, P availability decreased during the first 6 weeks and then showed a considerable increase from the 8th week onwards. P fixation increased for up to 8 weeks with the rates of P in the absence of manure. With manure application, P fixation increased only during the first 6 weeks and thereafter decreased continuously. Thus the presence of farmyard manure shortened the period of P fixation and promoted its availability. After 16 weeks of incubation, when manure and fertilizer P were applied together, P was transformed into labile organic (NaHCO3–P), moderately labile organic P (NaOH-P), and calcium-bound inorganic P (HCl-P). When manure was not applied. P accumulated predominantly as labile inorganic (NaHCO3–P), moderately labile inorganic (NaOH-P), and inorganic HCl-P. The application of farmyard manure enriched long-term P fertility through NaHCO3–P and NaOH–P and a shortterm P supply as HCl-P. All fractions except inorganic NaOH-P showed good relationships with Olsen P.  相似文献   
36.
Methods to quantify organic carbon (OC) in soil fractions of different stabilities often involve time-consuming physical and chemical treatments. The aim of the present study was to test a more rapid alternative, which is based on the spectroscopic analysis of bulk soils in the mid-infrared region (4000-400 cm−1), combined with partial least-squares regression (PLS). One hundred eleven soil samples from arable and grassland sites across Switzerland were separated into fractions of dissolved OC, particulate organic matter (POM), sand and stable aggregates, silt and clay particles, and oxidation resistant OC. Measured contents of OC in each fraction were then correlated by PLS with infrared spectra to obtain prediction models. For every prediction model, 100 soil spectra were used in the PLS calibration and the residual 11 spectra for validation of the models. Correlation coefficients (r) between measured and PLS-predicted values ranged between 0.89 and 0.97 for OC in different fractions. By combining different fractions to one labile, one stabilized and one resistant fraction, predictions could even be improved (r=0.98, standard error of prediction=16%). Based on these statistical parameters, we conclude that mid-infrared spectroscopy in combination with PLS is an appropriate and very fast tool to quantify OC contents in different soil fractions.  相似文献   
37.
Summary Topsoils (0–75 mm) from four different soil types were collected from stock camp and non-camp (main grazing area) areas of grazed pastures in New Zealand, which had been fertilised annually with superphosphate for more than 15 years, in order to assess the effects of grazing animals on the status and distribution of soil S fractions and organic matter. These soils were analysed for organic C, total N, total S, C-bonded S, hydriodic acid-reducible S, 0.01 M CaCl2, and 0.04 M Ca(H2PO4)2-extractable S fractions, and soil pH. Soil inorganic and organic S fractions extracted by NaHCO3 and NaOH extractants were also determined. The results obtained showed that camp soils contain higher soil pH, organic C, total N, total S, organic (C-bonded S and hydriodic acid-reducible S) and inorganic S fractions, NaHCO3-and NaOH-extractable soil S fractions but a lower anion retention capacity than non-camp soils, attributed to a higher return of plant litter and animal excreta to camp soils. In both soils, total S, organic S, C-bonded S, and hydriodic acid-reducible S were significantly correlated with organic C (r0.90***, ***P0.001) and total N (r0.95***), suggesting that C, N, and S are integral components of soil organic matter. However, C: N : S ratios tended to be lower in camp (60: 5.6: 1–103: 7.2: 1) than in non-camp soils (60:6.1:1–117:8.3:1). Most (>95%) of the total soil S in camp and non-camp soils is present as organic S, while the remainder is readily soluble and adsorbed S (i.e. Ca(H2PO4)2-extractable S). C-bonded S and hydriodic acid-reducible S constituted 55%–74% and 26%–45% of total S, respectively, reflecting a regular return of plant litter and animal excreta to the grazed pastures. NaHCO3, and especially NaOH, extracted significantly higher amounts of total soil S (13%–22% and 49%–75%, respectively) than Ca(H2PO4)2 or CaCl2 (<5%). In addition, NaHCO3 and NaOH-extractable soil S fractions were significantly rorrelated with soil organic S (r0.94***), C-bonded S (r0.90***) and hydriodic acid-reducible soil S (r0.93***). Differences between soils in either camp or non-camp areas were related to their sulphate retention capacities, as soils with high sulphate retention capacities (>45%) contain higher levels of C-bonded and hydriodic acid-reducible S fractions than those of low sulphate retention soils (<10%). Long-term annual superphosphate applications significantly increased the accumulation of soil organic and inorganic S fractions, and organic C and total N in the topsoil, although this accumulation did not occur when the superphosphate application rates were increased from 188 to 376 kg ha-1 year-1.  相似文献   
38.
紫云英添加对土壤团聚体组成及有机碳分布的影响   总被引:4,自引:0,他引:4  
周方亮  李峰  黄雅楠  耿明建  黄丽 《土壤》2020,52(4):781-788
以湖北省武汉市稻田土壤为研究对象,分别设置不添加紫云英(CK)、添加2%土壤质量的紫云英(G1)、添加4%土壤质量的紫云英(G2)3个处理,进行干湿交替模拟培养试验,研究培养60、120和180d土壤团聚体组成及团聚体内有机碳的分布特征。结果表明:添加紫云英培养120 d增加了各处理2 mm团聚体含量,培养60 d时G1处理的增幅最大(78.08%),培养120 d时G2处理的增幅最大(77.31%),且显著提高了团聚体的平均重量直径。不同培养时期添加紫云英均提高了土壤的有机碳含量,且G2处理土壤有机碳含量高于G1处理,各处理随着培养时间的增加有机碳含量先增加后降低。团聚体中有机碳含量均随着粒级的减小而降低,紫云英添加培养180 d时团聚体各粒级有机碳含量均有所提升,且2 mm团聚体的有机碳含量增幅最大(17.17%~43.67%)。紫云英添加培养120 d时主要增加大团聚体内各有机碳组分的相对含量,180 d时显著增加了微团聚体内细颗粒有机碳的含量。  相似文献   
39.
There are two common methods to characterize organic chemical composition of decomposing plant litter, a forest products method and a forage fiber method. These methods divide litter into a few fractions based on extractions using different solvents. In this study, equivalencies were established between the fractions of the methods. Some of the equivalencies were based on similarities in the fractionation methods, whereas some were estimated empirically. The equivalencies gave similar chemical composition for different litter types as measurements. The results were also comparable to, or for certain fractions even better than, those obtained using earlier conversion equations. The equivalencies established are suitable for converting the forage fiber fractions to the forest products fractions in litter decomposition studies. Thus, they increase possibilities to exchange data on litter chemical characteristics across the methods in decomposition studies.  相似文献   
40.
Abstract

Laboratory and greenhouse studies were conducted on six soils from natural reserves, seven plantation soils, and two arable soils from the Omo biosphere reserves in southwestern Nigeria to assess the phosphorus (P) fractions and the extent to which the soils could support five consecutive cycles of maize (Zea mays L.) harvest. The organic‐P fractions constitutes about 50% of the total P, and the inorganic‐P fractions in the order of abundance was iron (Fe) P>occluded P>aluminum (Al)‐P>calcium (Ca) P. The residual P constituted about 20% of the total P. There were significant reductions in the inorganic‐P fractions after five consecutive maize harvests; this was however, more pronounced in the available P (Bray 1). About 62% reduction in Bray 1 P was recorded after maize harvests. The reductions in the P forms after five cycles of maize harvest was Bray 1 P>Ca P>residual P>Al P>total P>Fe P>organic P>occluded P>reductant P. The capacity of the soils to support maize growth without fertilization varied widely in each of the maize cycle. Soil from natural reserves produced a significantly higher maize yield compared to most plantation soils. The arable soils investigated were depleted of their fertility after the third crop harvest.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号